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This naive supposition that the central vertex(es) in polycyclic graphs should always belong 
to central ring(s) was examined for various cases of systems containing condensed (fused) 3-, 
4-, 5-, 6- and 7-membered rings, as well as combinations of 5- and 7-membered rings. It was 
found that this conjecture is a general trend valid in the great majority of cases. However, coun- 
terexamples with the smallest number of rings are reported for all types of  these systems. 

1. Introduction 

A well-known theorem in graph theory [1] states that acyclic connected graphs 
(trees) have a unique center, centroid and median consisting of one vertex or a pair 
of adjacent vertices. The center has the minimax property of having the smallest 
eccentricity, the centroid has the minimax property of having the smallest weight, 
and the median has the smallest vertex distance (or distance sum). In trees, the cen- 
troid coincides with the median [2,3]. The center and centroid of trees may, or 
may not, coincide. Examples and definitions may be found in monographs [1,3] and 
papers [4,5]. Based on the centroid as a graph invariant for trees, Read developed 
a coding and nomenclature system for acyclic structures [6]. 

In our previous papers [7-10], we proposed algorithms for restricting the num- 
ber of central vertices in cyclic graphs, in the hope to attain comparable simplicity 
to that encountered for trees. Generalized definitions have been advanced in these 
papers for a graph center, with the aim to approach the "ultimate solution" of the 
problem by producing central vertices that are topologically equivalent (belonging 
to the same orbit of the graph automorphism group). 

The central rings in benzenoid hydrocarbons became also of interest by being 
regarded initially as central vertices in the so-called dualist graphs or simply dual- 
ists [11,12] (graphs whose vertices represent the central points in the hexagonal ben- 
zenoid rings). This idea proved to be a fruitful one, providing a convenient graph- 
based centric nomenclature and coding of benzenoid hydrocarbons [13]. A similar 
version of centric benzenoid nomenclature has been proposed lately [14]. The con- 
cept of supergraphs was also put forward [15] in which each supergraph vertex 
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represents a ring irrespective of its size. This concept was utilized in developing clas- 
sification, coding and complexity of linear reaction mechanisms in chemical 
kinetics [16-18]. Another application is the proposed universal nomenclature and 
coding of chemical compounds [19] which makes use of central vertices for acyclic 
structures, central rings for polycyclic structures and even central fragments (in a 
so-called fragment graph, whose vertices represent molecular fragments) for very 
complex molecules. 

In continuing the series of studies on graph centers in the present paper we try 
to elucidate another point of importance: the interrelations between the central ver- 
tices and central rings in planar connected simple graphs. Graphs containing con- 
densed (fused) 3-, 4-, 5-, 6- and 7-membered rings are discussed with this purpose. 

2. Some definitions 

The classical definition of the graph center was put forward by several well- 
known mathematicians in the 19th century (Jordan, Sylvester, Cayley) [20,21]. It 
makes use of distances in graphs. The distance d/j between vertices i and j  is an inte- 
ger specifying the number of graph edges separating the two vertices along the 
shortest path between them. The largest distance from a vertex i to any other vertex 
in the graph is called vertex eccentricity, e;. The vertices with minimal eccentricity 
are called central, or, in other words, central are those vertices i which satisfy the 
minimax criterion 

ei = max d/j = min .  (1) 

The concept of a graph center has initially been defined for acyclic graphs 
(trees) for which it specifies a single central vertex or a bicenter, i.e. two adjacent 
vertices which are endpoints of a central edge. 

Another centric concept developed for such graphs is that of centroids or mass 
centers. It is based on the idea of weighting each of the tree vertices. All branches, 
1 ,2 , . . . ,  k , . . .  originating from a certain vertex i are taken into consideration and 
the number of edges N/k they contain is counted. The largest one defines the vertex 
weight, wi. Hence, the centroid (mass center) is (are) the graph vertex(es) having 
the minimal weight, according to the minimax condition 

wi = m a x  Nik = min . (2) 

A third concept introduces the graph median as vertex(es) having the minimal 
vertex distance, di. The latter is also called vertex status or distance sum because it 
represents the sum of the distances from a certain vertex i to all other graph ver- 
tices. Once again, this type of graph center is determined as being the "closest" to 
the remaining vertices, 

d i =  ~ d/j = min, (3) 
J 
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where i is the graph median. 
Both the classical graph center and the graph median are applicable to acyclic, 

as well as to cyclic, graphs. However, in the latter case they frequently qualify as 
central a rather large number of graph vertices, and even, in some extreme cases, all 
graph vertices possess this property. This was what prompted the extension and 
generalization of the graph center definitions in a series of our previous publica- 
tions [7-10]. They will not be presented here because in a first study on the interrela- 
tion between the central vertices and central rings in graphs one necessarily has to 
limit one's efforts to the simplest and best known kinds of graph centers - the classi- 
cal center and the median. 

3. Benzeno ids  

We shall use the term benzenoid orpolyhex [22] for indicating polycyclic systems 
formed from six-membered rings. Hydrogen-depleted graphs will be used through- 
out. No restrictions exist as to the geometrical (as distinct from graph-theoretical) 
planarity of such systems, therefore benzenoids will include compounds such as 
[6] helicene (their graphs, however, are always planar). 

The dualist of a benzenoid [11 ] consists of vertices which are the centers of hexa- 
gons, and of edges connecting vertices that correspond to condensed hexagons, 
i.e. to hexagons sharing an edge. When the dualist is acyclic, the benzenoid is called 
cata-condensed (catafusene); when it has three-membered rings, the benzenoid is 
called peri- condensed (perifusene); when it has larger rings which are not periph- 
eries of three-membered ring aggregates, the benzenoid is called corona-condensed 
(coronoid). 

3.1. NON-BRANCHED CATAFUSENES 

The dualist of a nonbranched catafusene is a string of vertices with degrees 1 
and 2, whose center is one vertex or a pair of adjacent vertices. The corresponding 
benzenoid rings are therefore called central rings. In most cases, the central vertices 
of the benzenoid (symbolizing carbon atoms) belong to the central rings of the ben- 
zenoid hydrogen-depleted graph. Thus, in an acene, e.g. graph 1, or a fibonacene 
(zig-zag catafusene) e.g. graph 2, both with 2k benzenoid rings, the center of the 
dualist is a pair of adjacent vertices, and the central vertices of the benzenoid con- 
sist in the shared vertex pair crossing the center of the dualist, i.e. these are the ver- 
tices on the edge shared by the two central rings. The same rule applies to a 
helicene with 2k benzenoid rings, e.g. 3, which is isomeric and isoarithmic with a 
fibonacene having the same number 2k of benzenoid rings (fig. 1). Two benzenoids 
are called isoarithmic if they have the same number of Kekule structures. 

Proceeding from numerous examples one is tempted to conjecture as a general 
result that the central vertices always belong to the central rings. However, this is 
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1 (k = 2) 2 (k = 3) 3 (k = 3) 

Fig. 1. Nonbranched catafusenes 1- 3 with their dualists, whose vertices are open circles; the larger 
open circles indicate the center or bicenter of the dualist; the central vertices of the benzenoid are indi- 

cated by black points. 

not  always true, and in the following we present counterexamples containing the 
smallest benzenoid hydrocarbons in which the central vertices do not  belong to the 
central rings. 

Let a nonbranched catafusene be composed of  2k benzenoid rings, k of  which 
are linearly condensed (acene-like), and the remaining k rings are helicenic. The 
first such systems 4 - 7  are presented in fig. 2. 

4 (k = 3) 5 (k = 4) 6 (k = 5) 

7 ( k = 6 )  

t 
Fig. 2. A series of nonbranched catafusenes 4-7 with dualists and central vertices, indicated as in 

fig. 1, in which the higher members do not have the central vertex(es) in the central rings. 
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It is easy to prove that: (i) 4 is the smallest nonbranched catafusene with 2k rings 
in which one of the central vertices does not lie on the common edge between the 
two central rings, but still the central vertices belong to the central rings; (ii) 5 is the 
smallest nonbranched catafusene with 2k rings in which no central vertex lies on 
the shared edge between the two central rings, but still the central vertices belong to 
the central rings; (iii) 6 is the smallest nonbranched catafusene with 2k rings in 
which one of the central vertices does not belong to any of the central rings; (iv) 7 is 
the smallest nonbranched catafusene with 2k rings in which none of the central ver- 
tices belongs to any of the central rings. 

If the total number of rings is odd (2k + 1), the benzenoid will have a single cen- 
tral ring and the smallest nonbranched catafusenes with the above properties (iii) 
and (iv) will have three rings less. 

3.2. BRANCHED CATAFUSENES 

Again the dualist in this case is a tree, therefore it has a uniquely defined cen- 
troid coinciding with the median, as well as a uniquely defined center. Thus, these 
benzenoids have either a central ring, or a pair of condensed central rings. The 
obvious inference is that in most cases the central vertices of these benzenoids will 
belong to the central ring or rings. 

Fig. 3 contains an example 8 whose dualist has a vertex (A) as both its center 
and centroid. By the distance sum criterion, vertex 1 is the median of the benzenoid, 
and by the eccentricity criterion vertex 2 is its center, satisfying indeed the above 
inference. 

A series of branched catafusenes whose central vertices always belong to the cen- 
tral ring is presented in fig. 4. Starting with dualists whose last endpoint is C, the 
central vertices are the three indicated by black points of the central ring in 9. For 
10, when the dualist has its endpoint C, vertex 2 is the center of the polyhex, but for 
all higher members of this series, vertices 1 and 2 are the centers. 

8 

Fig. 3. A branched catafusene 8 with its dualist (see fig. 1 for further conventions). 
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9 10 

Fig. 4. Two series of branched catafusenes (9, 10) with their dualists, central ring (A) and central ver- 
tices (black points). 

We now proceed to find systems which contradict the above inference. Figure 5 
and table 1 present three such series, with the indicated central ring A having three 
equally long branches. In the polyhexes 11 and 12 with bilateral symmetry, the sys- 
tems with r = 4, 7 and 10 benzenoid rings have their central vertices belonging to 
the uniquely defined central ring A. The smallest benzenoid in series 11 whose cen- 
tral vertices (a nonadjacent pair) do not belong to the central ring has r = 19 
rings, whereas in series 12 it has only 16 rings. Also for the asymmetric series 13, the 
smallest such benzenoid has 16 rings. 

3.3. PERIFUSENES 

Subdivisions in this category include Kekulean perifusenes and non-Kekulean 
ones. The latter can be obvious (with an excess of starred over nonstarred vertices, 
to adopt the Longuet-Higgins terminology for bipartite graphs), e.g. 14, or con- 
cealed (having equal numbers of starred and nonstarred vertices, yet having no 
Kekule structure, or no perfect matching), e.g. 15. Necessary and sufficient criteria 
for perifusenes to be concealed non-Kekuleans were found recently [23-27]. With 
perifusenes, the center, centroid, and median of the dualist will be defined by the 
criteria (1)-(3) presented in section 2. 

Graph 14 in fig. 6 shows a series of obvious non-Kekulean perifusenes in which 
only the first members have central vertices belonging to the three central rings. 
The structure with 11 rings is the last one in which this is still true (vertices 2 and 3) 
but it is also the first structure in the series in which a vertex not belonging to the 
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v v v -,,~6-~ 2 E~ 

11 ~ 1 2  ~ V  

13 
Fig. 5. Three series of branched catafusenes (11-13) whose central vertices no longer lie on the central 

ring A in the higher members of the series. 

Table 1 
Central vertices of the branched catafusenes 11-13 from fig. 5 whose endpoints of the dualists are de- 
noted by the indicated letter. 

Benzenoid B C D E - - 
Rings (r) 4 7 10 13 16 19 

11 1-6 3,4 3-6 5,6 5-8 7,8 
12 1-6 5, 6 5, 6 5-8 7, 8 7, 8 
13 1-6 4, 5 5 5-7 7 7, 8 
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0 

14 

3 

16 

15 

Fig. 6. Three cases of perifusenes: obvious non-Kekulean (graph 14), concealed non-Kekulean 
(graph 15) and Kekulean (graph 16). In the higher members of series 14 and 16 (having 11 and 13 

rings, respectively) the single central vertex 4 does not belong to the central ring(s). 

central rings is a central one (vertex 4). The structure with 13 rings has no more cen- 
tral vertices belonging to the central rings; the single center is vertex 4. Likewise, 
graph 16 in fig. 6 presents a series of Kekulean perifusenes with fixed double 
bounds along the edges of the six-membered rings which are drawn in elongated 
form. This is a series in which the inference for an interrelation between central ver- 
tices and rings is violated as early as in the perifusene with 9 rings where one of 
the central vertices (vertex 4) does not belong to the central ring. In the next mem- 
ber of the series having 11 rings the single central vertex 4 does not belong to any 
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of the central rings. The concealed non-Kekulean perifusenes are exemplified in 
fig. 6 with a single structure in which the six central vertices all belong to the central 
ring. 

Figures 7 and 8 present examples of Kekulean perifusenes forming series in 
which again the first members have the central vertices of the benzenoids belonging 
to the central rings, but for the higher members this is no longer true. We examine 
systems having pyrene and perylene units at the graph center. Figure 7 and table 2 
describe two series, 17 and 18, based on pyrene. In both cases, the systems with 12 
rings are the smallest ones with one central vertex not belonging to the central 
rings, and the systems with 14 rings are the smallest ones with no central vertices 
belonging to the central rings. 

17 

l 
18 

Fig. 7. Two series (17, 18) of Kekulean perifusenes based on pyrene in the higher members of which 
the central vertices (e.g. vertex 3) lie outside the central rings indicated by larger open circles. 

Table 2 
Central vertices of the two Kekulean perifusene series 17 and 18 based on pyrene from fig. 7 whose 
endpoints of the dualists are denoted by the indicated letter. 

Benzenoid B C D E - 
r 6 8 10 12 14 

17 1 1,2 2 2,3 3 
18 1,2 1,2 2 2,3 3 
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In fig. 8 and table 3 are shown two series based on perylene. The smallest mem- 
ber of series 19 whose central vertex does not belong to the central ring has 13 rings, 
and the smallest member whose central vertex does not belong to the perylene sub- 
graph has 17 rings. The corresponding smallest members of series 20 have 11 and 
19 rings, respectively. Thus, the smallest Kekulean benzenoid hydrocarbon in 
which none of the central vertices belongs to a central rings is that with 11 rings in 
series 20. 

4 

19 2O 

Fig. 8. Two series (19, 20) of Kekulean perifusenes based on perylene whose higher members have 
the central vertices (e.g. 3,4) not belonging to the central ring indicated by the larger circle. 

Table 3 
Central vertices of the two Kekulean perifusene series (19 and 20) based on perylene from fig. 8 
whose endpoints ofthe dualists are denoted by the indicated letter. 

Benzenoid B C D E - - - 
r 7 9 11 13 15 17 19 

19 - 1 1,2 2 2,3 3 3,4 
20 1 1,2 2 2,3 3 3,4 4 
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4. Nonbenzeno id  polycyclic condensed systems 

We shall discuss, for the sake of mathematical completeness, chemically irrele- 
vant systems composed either only of 4- or only of 3-membered rings. As it is well 
known, the plane can be covered only by lattices of regular 3-, 4- and 6-gons; we 
have already discussed the hexagons in the previous section. The three above lat- 
tices gave rise to the still unsolved graph- theoretical problems of the "animal cells 
in triangular, square, and hexagonal animals", problems widely discussed by Har- 
ary [1 ]. Then, we shall discuss chemically relevant non-benzenoid condensed poly- 
cyclics composed of 5- and 7-membered rings. 

4.1. "SQUARE A N I M A L S "  

We shall examine only 4-membered ring analogs of nonbranched cata-con- 
densed systems, considering again that usually the central vertices will belong to 
the central rings, but sometimes the topology will lead to exceptions. Such a case is 
presented in fig. 9 and table 4. 

4 2 

I, I"IGIFIEIDIclBIA O"I 
531 

] 

F G H 

I 
E 

D C 

21 

Fig. 9. A series of nonbranched tetragonal systems (21) the higher members of which have their cen- 
tral vertices (e. g. 3,4) outside the central ring indicated by the circle. 

Table 4 
Central vertices of the series of nonbranched tetragonal systems 21 from fig. 9 whose endpoints of 
the dualists are denoted by the indicated letter. 

Systems A B C D E F G H I 
r 3 5 7 9 11 13 15 17 19 

centers 1 1 1-3 1-3 3 3 3-  5 3-5 5 
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It may  be seen that the smallest member  of  the series 21 whose central vertices 
include a point  not  belonging to the central ring has 7 rings, and that the smallest 
member  of  the series which has no central vertex belonging to the central ring has 
11 rings. 

4.2. "TRIANGULAR ANIMALS" 

The analogous problem for systems 22 composed  of  triangles is shown in fig. 
10 and table 5. 

An interesting oscillating behavior  is observed. The smallest system in this series 
including among the central vertices a point  which does not  belong to the central 
ring has 11 rings; the smallest member  of  this series which has no central vertex 
belonging to the central ring has 19 rings. 

5 3 

6 4 2 

Fig. 10. A series of nonbranched trigonal systems (22) the higher members of which have their central 
vertices (e.g. 3, 4) outside the central ring indicated by the circle. 

Table 5 
Central vertices of the series of nonbranched trigonal systems 22 from fig. 10 whose endpoints of 
the dualists are denoted by the indicated letter. 

Systems A B C D E F G H I J 
r 9 11 13 15 17 19 21 23 25 27 

centers 1 1-4 1,3,4 1-4 1,3,4 3,4 3 3,4 3 3-6 
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4.3. N O N B R A N C H E D  CATA-CONDENSED SYSTEMS COMPOSED OF 5- MEMBERED 

RINGS 

Analogously to the foregoing systems, fig. 11 and table 6 describe a chain 23 
with 2k five-membered rings arranged linearly on one side and curved (spiralling) 
on the other side. 

4 

23 

3 

Fig. 11. Two series of nonbranched cata-condensed systems composed of 5-membered rings: series 
23 with even number of  rings, whose higher members have central vertices (e.g. 6, 7) outside the pair 
of central rings indicated by the circles and series 24 with odd number of rings whose higher members 

have central vertices (e.g. 5, 6) outside the unique central ring. 

Table 6 
Central vertices of the series of nonbranched cata-condensed systems 23 composed of an even num- 
ber of 5-membered rings given in fig. 11 whose endpoints of the dualists are denoted by the indicated 
letters. 

Systems A B C D E F - - - 
r 4 6 8 10 12 14 16 18 20 

centers 2 1-3 1,2 1 1 1,4-- 6 1,4-6 5, 6 6 

Table 7 
Central vertices of  the series 24 of nonbranched cata-condensed systems composed of odd number 
of 5-membered rings given in fig. 11 whose endpoints of  the dualists are denoted by the indicated let- 
ters. 

Systems A B C D E F G 
r 3 5 7 9 11 13 15 

centers 1-3 1 1 1,3-5 1, 4, 5 4, 5 5 
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One can observe that  the smallest member of  this series including among its cen- 
tral vertices a point  which does not belong to the central rings has 14 rings, and 
the smallest member  which has no central vertex belonging to the central rings has 
20 rings. 

When the number  of  five-membered rings is odd (2k + 1), as in series 24, fig. 11 
and table 7, a similar type of  fusion leads to the smallest member  of  the series whose 
center includes a vertex not  belonging to the unique central ring when 2k + 1 = 9, 
whereas the smallest member which has no central vertex belonging to the central 
ring has 2k + 1 = 15 rings. 

4.4. NONBRANCED CATA-CONDENSED SYSTEMS COMPOSED OF 7-MEMBERED 

RINGS 

There exist two possibilities for condensing analogously 2k seven-membered 
rings, giving rise to two series 25 and 26, as seen in fig. 12. 

The smallest member of  series 25 (table 8) whose central vertices include a point  
which does not  lie on one of  the two central rings, and at the same time no point 
of  the central ring is a central vertex has, 12 rings. 

In series 26 (table 9) the interrelation of  the central rings and central vertices is 
violated at considerably smaller systems. Thus, the smallest nonbranched cata-con- 
densed system whose central vertices include a vertex not belonging to the central 

9 4 
6 2 

Fig. 12. Two series ofnonbranched cam-condensed systems (25 and 26) composed of an even number 
of 7-membered rings, the higher members of which have central vertices outside the pair of central 

rings indicated by the circles. 
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ring has 8 rings, whereas the smallest similar system in which no central vertex 
belongs to a central ring is that with only 10 rings. The comparison of series 25 and 
26 and the corresponding tables shows the importance of both the ring size and 
the topology offing fusion. 

Table 8 
Central vertices of the series of nonbranched cata- condensed systems 25 composed of  an even num- 
ber of  7-membered rings (fig. 12) whose terminal rings are denoted by the indicated letters. 

Systems - A B C D E 
r 2 4 6 8 10 12 

centers 1,2 2, 3 3-5 4-7 7 8, 9 

Table 9 
Central vertices of the series 26 of nonbranched cata-condensed systems (fig. 12) composed of an 
even number of 7-membered rings whose terminal rings are denoted by the indicated letters. 

Systems A B C D 
r 4 6 8 10 

centers 1 1, 2 2, 3 3 

( 
27 

Fig. 13. A series of nonbranched cam-condensed systems (27) composed of  an odd number of 7-mem- 
bered rings, whose higher members have central vertices not belonging to the unique central ring indi- 

cated by a circle. 

Table 10 
Central vertices of  the series 27 of  nonbrancbed cata-condensed systems (fig. 13) composed of  an 
odd number of  7-membered rings whose terminal rings are denoted by the indicated letters. 

Systems A B C 
r 3 5 7 

centers 1, 2 1, 3, 4 4 
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When the number ofseven-membered rings is odd (2k + 1), from the two possibi- 
lities similar to the series 25 and 26, the one analogous to 25, namely series 27 
(fig. 13 and table 10) leads to the smaller graphs with central vertices o f f the  central 
rings: the smallest member of  the series whose central vertices include a vertex not 
belonging to the unique central ring has only five rings, while the smallest member 
of  the series with no central vertex belonging to the central ring has seven rings. 

4.5. CATA-CONDENSED NONBRANCHED SYSTEMS WITH 2k ALTERNATING 5- AND 
7-MEMBERED RINGS 

Analogously to the previous cases, starting from azulene which is the smallest 
representative of  this class, we investigated the series 28 shown in fig. 14 and table 
11. 

The smallest system in this series having among its central points a vertex which 
does not belong to the central rings has 10 rings, and the smallest system with no 
central vertex belonging to the central ring has 16 rings. Of  course, there are many  

764 3 

Fig. 14. A series of nonbranched cata-condensed systems 28 with alternating 5- and 7-membered 
rings. The members having at least 12 rings have central vertices outside the pair of central rings indi- 

cated by the circles. 

Table 11 
Central vertices of the series of nonbranched cata- condensed systems 28 composed of 2k alternating 
5- and 7-membered rings given in fig. 14 whose terminal rings are denoted by the indicated letters. 

Systems A B C D E F G - 
r 4 6 8 10 12 14 16 18 

centers 1,5 1 5 3-6 4, 6, 7 4, 6, 7 7 7 
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more alternative ways of having nonbranched or branched cata-condensed sys- 
tems with alternating 5- and/or 7-membered rings (or systems with 5-, 6- and 7- 
membered rings), but here we examined only the salient, most relevant cases. 

5. Concluding remarks 

In the foregoing we have reported the main results of a first study on the interre- 
lation of central vertices and central rings in polycyclic simple connected graphs. 
Most of these graphs contain 6-, 5- or/and 7-membered tings and have vertices 
with degrees 2 and 3, therefore they correspond to conjugated molecules. The hexa- 
gonal systems which have numerous analogs in benzenoid hydrocarbons have 
been analyzed in more detail by treating cata- and peri-condensed cases, as well as 
nonbranched and branched ones. In addition, systems with 3- or 4-membered rings 
with very limited chemical relevance were taken into consideration for the sake of 
mathematical completeness. Besides theoretical interest these studies could be of 
use for nomenclature and coding purposes, because shell description or shell cod- 
ing around a central graph vertex or central atomic rings seem to be a very efficient 
organizing principle [13-19]. Another area of potential application could be the 
search for similarity in molecular properties for systems having similar centric 
atomic or ring patterns. 

The most natural interrelation between the central vertices and central rings is 
the one in which the central vertices belong to central rings, and this was found to 
occur in the great majority of cases. However, series of strongly asymmetrically 
fused graphs have been constructed that provide counterexamples to this inference. 
These are graphs containing a ribbon of cycles half of which are linearly condensed 
while the other half is maximally curved, i.e. the latter rings are helically 
arranged. When increasing the size of such a graph by attaching each time a ring on 
each of its two ends, one attains a fast displacement of the central vertices out of 
the central rings of the graph. We conjecture that the counterexamples produced in 
this way are those with the smallest possible number of rings for each type of cyclic 
graph under consideration. Indeed, this statement may be regarded as a challenge 
for further investigations. However, the major question which still needs to be 
answered is a much more general one: to what extent do symmetry and topology 
control the interrelation of the central vertices and rings in graphs? We hope to 
report more results on the matter in the near future [28]. 
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